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Transport in Cartesian coordinates

Now 
● fluid parcels are everywhere
● Hence we can regard      and      as fields 
● The above time derivative is the material or Lagrangian derivative
● By the chain rule :

Consider 
● a fluid parcel with position           and velocity 
● carrying a property such as specific (= per unit mass) entropy or specific salinity
● which evolves according to

Advective form



  

Mass budget in Cartesian coordinates

Now
● Assume all species have the same (macroscopic) velocity
● Define density as : 

● Then

● With some algebra :

Consider
● a mixture of molecules O2, N2 ...
● each with number per unit volume  
● And moving with velocity
● Then

   Flux form
= conservative form



  

Transport in curvilinear coordinates

The geometry of the Earth is better suited to
curvilinear coordinates
● For instance spherical coordinates
● In general : 
● By the chain rule :

● where by definition

are the contravariant components of velocity

Phillips,
1970



  

Transport in curvilinear coordinates

contravariant velocity components

Phillips,
1970

pseudo-density

mass and entropy budget
conservative form



  

Physical vs contravariant components

● Contravariant formulation independent from the coordinate system
● No information about the geometry needed
● Naturally in conservative form (flux-form)



  

Physical vs contravariant components

● Contravariant formulation independent from the coordinate system
● No information about the geometry needed
● Naturally in conservative form (flux-form)

Sadourny, 1972



  

Important consequences of the transport equations



  

Important consequences of the transport equations

Technical reminder :



  

Geometric approximations : 

The shape of the Earth and its approximate representation



  



  

Motion in an inertial Cartesian frame



  

Motion in a rotating Cartesian frame

● Newton's fundamental principle of dynamics
● Forces : pressure and gravity
● Pseudo-forces : Coriolis and centrifugal

Planetary velocity
Geopotential



  

Dynamics in curvilinear coordinates

Phillips,
1970

?



  



  

Dynamics in curvilinear coordinates

Phillips,
1970

metric

covariant components
?



  

Dynamics in curvilinear coordinates

Phillips,
1970

(Tort & Dubos, 2014)

● covariant : same form in all coordinate
systems

● derives from a variational principle :
Hamilton's principle of least action

● dynamically consistent (White & Bromley, 1995) :
conserves energy, angular momentum,
potential vorticity for any choice of zonally-
symmetric metric, planetary velocity, Jacobian

metric, planetary velocity, Jacobian can be
approximated without jeopardizing
dynamical consistency

 

various geometric approximations, each
characterized by a certain choice of metric
and planetary velocity



  

Spherical geoid approximation

● Ellipticity of geoids ~ centrifugal / gravitational ~ 1/300
● Spherical geoid approximation : pretend that the metric in

geopotential coordinates is actually spherical !

Geopotential



  

East-west wind velocity

Pressure

South-North wind velocity



  

●  atmospheric shallowness (radius a=6400 km >> r-a~50 km)  suggests to let r=a,
g(r)=g(a) and neglect blue terms : shallow-fluid approximation

● Small vertical velocities suggest to neglect red terms : traditional approximation



  

●  atmospheric shallowness (radius a=6400 km >> r-a~50 km)  suggests to let r=a,
g(r)=g(a) and neglect blue terms : shallow-fluid approximation

● Small vertical velocities suggest to neglect red terms : traditional approximation
● Phillips (1966) : both approximations must be made together, otherwise angular

momentum conservation is lost

Shallow-fluid : replace r by a in the metric                                                            
Traditional : replace r by a in the planetary velocity (Tort & Dubos, 2014)



  

Shallow-fluid and traditional approximations

 Atmospheric/oceanic shallowness (radius a=6400 km >> r-a~50 km)  suggests to let r=a

  Shallow-fluid : replace r by a in the metric                                                         
Traditional : replace r by a in the planetary velocity (Tort & Dubos, 2014)

f : Coriolis parameter 



  

Why would the pole of the coordinate system be at the geographical pole ?
Let us put it at some arbitrary latitude … (Verkley, 1990)

Traditional approximation :

=> only the Coriolis parameter f matters for the dynamics 
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Equatorial beta-plane
Beta-plane

f-plane Delta-plane

Tangent-plane approximations
Cartesian models with a simple expression of f 



  

Wrap-up



  

Rotating
Cartesian

Planetary velocity
Geopotential

Coriolis

Inertial
Cartesian

Gravity

Rotating
Curvilinear

Contravariant
Covariant

Rotating
Curvilinear

Exact geometry

spherical geoid

shallow-fluid
traditional

beta-plane

f-plane

    Fully compressible fluid

Boussinesq/anelastic Hydrostatic

Hydrostatic Boussinesq

● Geometry = metric tensor + planetary velocity
● Affects the equations of dynamics

(momentum)
● But transport equations are the same in any

coordinate system
● Flux-form <=> advective form
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