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Discretization I

Context : Cartesian geometry

● Conservation laws for continuous models
● From the continuous to the discrete, and what you lose
● Numerical dispersion : illustration with the rotating shallow-water equations

What do you have to say about a
numerical model/scheme ?
● Nice !
● Ugly !
● I like it !
● I hate it !

● We care about these properties because they are
present in the continuous laws of motion

● Can we obtain them in a discretized model ? How ?
● All ? Independently ? Incompatibilities ?
● Implications for performance / parallelism ? 

Hmm... let's try and be more factual
● Accurate
● Conservative
● Dispersive
● Dissipative / diffusive
● Positive / monotone
● Stable
● Explicit vs Implicit
● Local vs global



  

What they are
● Lagrangian vs integral
● Adiabatic vs diabatic
● Robust vs fragile

Where they come from
● Kinematics vs dynamics
● Variational principles, symmetries and dynamical

conservation laws

What they imply
● stability

Context : Cartesian geometry

● Conservation laws for continuous models
● From the continuous to the discrete, and what you lose
● Numerical dispersion : illustration with the rotating shallow-water equations



  

Conservation laws for continous models

Integral conservation law :
● Mass
● Total water / other species
● Energy
● (angular) momentum
● Potential enstrophy

Lagrangian conservation law : examples
● Entropy
● Water / other species
● Potential vorticity

Lagrangian conservation laws => infinitely many
integral conservation laws

Example : potential vorticity => potential enstrophy

boundary terms



  

Conservation laws : adiabatic vs diabatic

Focus on adiabatic conservation laws, i.e. those
that hold when irreversible physics is neglected

● irreversible processus => extra source / flux terms
● total energy : heating 
● momentum : viscous stresses (boundary)

● Exception : mass

Actual physics are irreversible but very little : frictionless limit
Relevant conservation laws ?
cf Thuburn,  JCP 2008

https://wiki.ucar.edu/download/attachments/25037023/14-Thuburn-Conservation.pdf?api=v2



  

Conservation laws : kinematic vs dynamical
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● Kinematic conservation law : true for any
equation of motion (e.g. Hydrostatic vs non-
hydrostatic)

● Dynamical conservation law : depends on the
equation of motion ...



  

Back to the origin of dynamical conservation laws

1834
Hamilton 

1915
Noether

1960
Eckart 

Hamilton's least
action principle (HP)

Noether's
theorem

HP for ideal fluid
(Lagrangian description)

Relabelling symmetry
=> Kelvin's theorem & 

conservation of potential vorticity

HP for ideal fluid
(Eulerian description)

HP in curvilinear
geopotential coordinates

Maupertuis
Euler,

Lagrange
1962

Newcomb
1996

Padhye & Morrison
2014

Tort & Dubos



  

inertia Coriolis gravitypressure

Kinetic energy

Planetary velocity

Internal energy
Potential energy

Lagrangian least action principle for fluid flow
(Eckart, 1960 ; Morrison, 1998)



  

conjugate momentum
= absolute velocity

Flux-form momentum budget

energy

Flux-form energy budget

Bernoulli function

Crocco's theorem   =  curl-form Potential vorticity



  

What they are
● Lagrangian vs integral
● Adiabatic vs diabatic
● Robust vs fragile

Where they come from
● Kinematics vs dynamics
● Variational principles, symmetries and dynamical

conservation laws

What they imply
● stability

Energy

Absolute angular momentum (AAM)

Casimir (kinematic ) invariants

Conservation laws for continous models



  

Conservation laws for continous models : what they imply
Energy-Casimir stability theory

● consider some integral invariant

ε

?● suppose that

=> stationary and stable flow !

pseudo-energy

Identify steady flow Sufficient stability criterion



  

Conservation laws for continous models : what they imply
Energy-Casimir stability theory

pseudo-energy

Montgomery potential

Static stability ds/dz > 0Hydrostatic balance



  

Energy

Absolute angular momentum (AAM)

Casimir (kinematic) invariants

Conservation laws for continous and discrete models

More conserved integral invariants, 
more guarantees of stability



  

Discrete degrees of freedom
● Discrete representations of scalar and vector fields
● Interpolation/reconstruction/projection ; order of accuracy
● Immediate consequences : (non-)preservation of algebraic

identities

Context : Cartesian geometry

● Conservation laws for continuous models
● From the continuous to the discrete, and what you lose
● Numerical dispersion : illustration with the rotating shallow-water equations



  

We assume that the following has already been done :
● A set of equations has been chosen : 

thermodynamics, geometry, hydrostatic/NH/Boussinesq
● A flow representation has been chosen : Eulerian vs non-Eulerian vertical coordinate 
● Prognostic variables have been chosen
● It is known how to obtain diagnostic variables : local or non-local (e.g. elliptic)  problem

Now we want to represent each field (prognostic, diagnostic) by a large but finite
set of numbers. 

● How to do it ? - basic examples
● How to apply operations (algebraic, differential) to these discrete representations ?
● Consequences for the properties of the scheme ?



  

Simplest idea :
● Sample field(s) at a number of points
● Those points usually form a mesh
● Interpolate between these points as needed

POP Charney et al., 1950

Richardson, 1922



  

Interpolation is a reconstruction problem :
● Data : M values of function f at points xi
● Unknown : function g in D-dimensional space with the same values as f at xi
● If D>M : over-conditioned problem => least-squares
● Once g has been found, use it instead of f to compute values and derivatives where needed

Local interpolation
=> Finite differences

Solve N independent
interpolation problems, using a
small number of data around

each point i (stencil)

Linear (d=1) / Quadratic (d=2) 

Error for values ~ dx^(d+1)
Error for gradient ~ dx^d

Small

Good

Global interpolation
=> Pseudo-spectral

use all points : M=N=D

Fourier

Error ~ exp(-cN) 
if f very smooth

OK to very large

Poor

Example

Accuracy
(Error f-g)

Cost

Parallelism

Geophysical flow fields not very smooth : high-order (>4)
interpolation probably not worth the cost (see Mavriplis, 2011)



  

Typical spaces for g :
● Polynomials
● Splines
● Radial basis functions (RBF)
● ...

Interpolation is a reconstruction problem :
● Data : M values of function f at points xi
● Unknown : function g in D-dimensional space with the

same values as f at xi
● If M>D : over-conditioned problem => least-squares
● Once g has been found, use it instead of f to compute

values and derivatives where needed

Linear interpolation

● 2 data enough for 1D linear interpolation
● Interpolated values 2nd-order accurate
● gradient 1st-order accurate

● except at midpoint : second-order
accurate gradient

● superconvergence : extra accuracy at
some special points

superconvergent derivative



  

Another idea : « histopolation »
● Data = field integrated over each mesh cells
● Use cell data and nearest neighbors to

reconstruct field
● Typical of finite volume methods

Hourdin & Armengaud, 1999

Simplest idea : interpolation
● Sample field(s) at a number of points
● Those points usually form a mesh
● Interpolate between these points as needed

Linear interpolation

superconvergent derivative

=> very good accuracy/cost ratio using
regular Cartesian meshes  and

superconvergence

Stencil for 4th-order
histopolation 

(Ullrich et al., 2010)



  

Multidimensional reconstruction

D
1   Constant
3   Linear
6   Quadratic
10 Cubic
15 Quartic

1
x y
x2 xy y2

x3 x2y xy2 y3

1
x y z
x2 y2 z2 xy xz yz
x3 y3 z3 x2y x2z y2x y2z z2x z2y xyz

D
1   Constant
4   Linear
10 Quadratic
20 Cubic

3D

Cartesian or 2Dx1D meshes more efficient

for order-n reconstruction

1D : D ≥ n
2D : D ≥ n(n+1)/2
3D : D ≥ (d+1)3/3

N local DxD linear systems to solve (pre-computation)
Store NxD weights 

High-order
reconstruction

rapidly very costly !



  

Representation of vector fields

● components in coordinate system
● components on local basis
● components normal/tangential to mesh faces/edges
● curl / div

● Pointwise value (finite difference)
● Cell-integrated value (finite volume)

Different quantities possibly placed at different places : staggered meshes



  

Representation of vector fields

Strong recent trend in various fields of computational physics : discrete differential geometry
(see Thuburn & Cotter, 2012)
● Describe fields through their integrals over geometric objects
● Match geometric object (point, line, surface, volume) and « nature » of field

● Scalar field pointwise value 0D scalar field
● Momentum  line integral 1D covariant
● Flux integral across surface 2D contravariant
● Density integral over cell 3D mass-weighted scalar field



  

Representation of scalars and vectors : implications

usually fails

usually fails … but

often doable :
compatible discretizations of grad and div
Taylor, 2010

often works : with flux-form, yields
conservation of linear integral invariants
Finite-volume approach

No shortage of discrete representations of scalar and vector fields
● Which algebraic identities survive/fail at the discrete level ?
● How to analyse the behavior that emerges from a certain combination of choices ?

Enough for conservation of non-
linear invariants ? More later ...



  

Which algebraic identities survive/fail at the discrete level ?

often works : together with flux-form,
yields conservation of linear invariants
Finite-volume approach

often easy using discrete differential
geometry

important for vorticity dynamics



  

Basic idea : wave propagation reveals how the different fields are coupled to each other
● Hopefully numerical wave propagation resembles physical wave propagation …
● Many bad surprises ahead !
● If equations include many effects (forces), hard to have all couplings right
● Damage control : do at least the fast waves well

Context : Cartesian geometry

● Conservation laws for continuous models
● From the continuous to the discrete, and what you lose
● Numerical dispersion : illustration with the rotating shallow-water equations

Why analyze the RSW equations rather than the full 3D equations ?
● Simpler
● Disentangle issues related to vertical and horizontal discretization
● 3D hydrostatic modes separate into vertical structure equation and horizontal

propagation problem



  



  

RSW : exact dispersion relationship

Stationary modes

PV conservation (linearized)

Non-stationary modes carry no PV

Non-stationary modes

Inertia Gravity

Geostrophic balance



  

Recap : waves in 3D stratified Boussinesq

Vertical density profile (stratification)
determines N(z), eigenvalues c-2 and

baroclinic structure W(z)

Do the waves propagate numerically 

as in the continuous model ?

● Numerical integrations in time 
● Look for eigenmodes and frequencies

● Regular mesh (Cartesian / Hexagonal /
Triangular) : Fourier transform => analytic
dispersion relationship (Randall, 1994)

● Unstructured mesh : numerical (Weller et al., 2012)f

kR
d
=1

K

ω

Inertia

Gravity

Rossby radius  R
d
=c/f



  

RSW : numerical dispersion relationship 

● Stationary checkerboard pattern
● « numerical mode » or « spurious mode »
● Wrong sign of group velocity

Reason : 
● u and du/dx are collocated
● the gradient of an alternating pattern is 0

instead of being large
● Frequency of small-scale waves

underestimated

(Randall, 1994)k

l

ω

dh/dxh h

Usually better to stagger a field and its derivative
Or dissipate high spatial frequencies (but reduces effective model resolution)



  

RSW : numerical dispersion relationship 

● Looks much better
● Gravity-waves propagate physically

due to velocity – mass staggering

● But: 
● u and v at different sites
● Coriolis term requires averaging
● Rossby radius unresolved =>

Inertial waves too slow

(Randall, 1994)

k

l

ω

Usually better to stagger a field and its derivative => C-grid

C-grid staggering on unstructured mesh



  

RSW : numerical dispersion relationship 

Gravity waves want u-v staggered ; inertial waves want u-v collocated => many possible trade-offs

Excellent dispersion but must solve Poisson problems



  

Gassmann., 2011

Regular polygonal C-grids

Hexagonal C-grid
Mass N
Div N

Vort 2N

Triangular C-grid
Mass 2N
Div 2N
Vort N

Cartesian C-grid
Mass N
Div N
Vort N

Divergent numerical modesVortical numerical  modes

Imbalance in the number of degrees of freedom => numerical branches in the dispersion relationship



  

Weller et al., 2012

General polygonal grids : more
possibilities, more problems ...

… and solutions : see Thuburn
(2008), Thuburn et al. (2009,
2014),  ...



  

Conservation laws
● Generic due to variational principle underlying the adiabatic equations of motion
● Nonlinear integral invariants guarantee stability close to certain base flows
● Linear integral invariants (mass, species) can be preserved by a finite-volume

approach

From the continuous to the discrete, and what you lose
● Many ways to represent prognostic and diagnostic fields
● Determines to a great extent how they couple to each other
● Most algebraic identities lost
● Certain important vector-differential identities can be preserved
● Care required to avoid bad surprises with numerical dispersion

unphysical branches
unphysical propagation of small-scale modes 
propagative => stationary but also stationary => propagative
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