
  

SG Spherical-Geoid
TSA Traditional Shallow-Atmosphere
FCE Fully Compressible Euler
HPE Hydrostatic Primitive Eq.
HB Hydrostatic Boussinesq
A Anelastic

EX Explicit
SI Semi-Implicit
Split Split
HEVI Horizontally Explicit,

Vertically Implicit

Direct Direct (spectral)
Iter Iterative

CC Cartesian Curvilnear
LL Latitude-Longitude
HEX Icosahedral-Hexagonal

FD Finite Difference
FV Finite Volume
FE Finite Element
SE Spectral Element
SL Semi-Lagrangian
SP Spectral

M Mass and scalars
E Energy
Z Enstrophy

NEMO ROMS IFS/ARPEGE MesoNH WRF EndGAME LMDZ DYNAMICO
Geometry SG+TSA SG+TSA SG+TSA SG+TSA SG+TSA SG SG+TSA SG+TSA
Dynamics HB HB FCE A FCE FCE HPE HPE/(FCE)

Grid CC CC LL CC CC LL LL HEX
Disc. Dyn FD FV SP FD FV FD FD FD
Transport FV FV SL FV FV FV FV FV
Conserv. M, E/Z M M M M M, E/Z M, E

Time Split-EX Split-EX SI EX Split-HEVI SI EX EX/HEVI
Helmholtz Direct Direct Iter
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Discretization IV

Context : Spherical shell geometry

● Vertical discretization : staggering, numerical dispersion
● Horizontal mesh : pole problem, spectral method, quasi-uniform meshes
● Conservation of non-linear integral invariants : from clever solutions to

systematic approaches
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Vertical discretization : 
● Vertical coordinates
● Where should we place prognostic/diagnostic variables
● Criteria : mass/transport consistency, numerical dispersion

Spherical meshes
● curvilinear Cartesian meshes
● global curvilinear Cartesian meshes : the pole problem
● a meshless method : spectral method
● quasi-uniform meshes and associated issues

Conservation of non-linear integral invariants
● a few clever solutions
● towards systematic approaches



  

Recap : hydrostatic dynamics, 
generalized vertical coordinates & prognostic variables

● a hydrostatic adjustment occurs at each
time step

● altitude z should be diagnostic
● vertical coordinate should be non-Eulerian

Hybrid mass-based coordinate

● Diagnose pseudo-density mu from total
column mass M

● Prognose M
● Diagnose dmu/dt
● Diagnose eta_dot
● Prognose entropy

● Hydrostatic adjustment => geopotential
● Prognose momentum

Lagrangian coordinate

● Prognose pseudo-density mu
● Prognose entropy
● If needed, vertical remap

● Hydrostatic adjustment => geopotential
● Prognose momentum

ki
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Generalized vertical coordinates & prognostic variables

Isentropic / Isopycnal

+ momentum + momentum

Mass-based

Lagrangian

+ momentum
4+1 fields

Redundant flow
description

3+1 fields
Non-redundant
flow description

Hydrostatic
Boussinesq

Anelastic

6 fields
Redundant flow

description

5 fields
Non-redundant
flow description

Euler

Eulerian (z-based)

+ momentum
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Lorenz staggering

Most atmosphere / ocean models
LMDZ, WRF, NEMO

Some atmosphere models
MetOffice

Charney-Phillips staggering



  

Vertical discretization : 
● Vertical coordinates
● Where should we place prognostic/diagnostic variables
● Criteria : mass/transport consistency, numerical dispersion

Spherical meshes
● curvilinear Cartesian meshes
● global curvilinear Cartesian meshes : the pole problem
● a meshless method : spectral method
● quasi-uniform meshes and associated issues

Conservation of non-linear integral invariants
● a few clever solutions
● towards systematic approaches



  

The pole : problem and solutions

Regular 2NxN lon-lat mesh

cell size (rad)

cell size (m)

Solutions
● Spectral method
● Zonal filters
● Quasi-uniform meshes



  

Curvilinear Cartesian meshes

● Any curvilinear Cartesian mesh covering the sphere must have singularities
● For ocean modelling they can be placed on continents
● Still quite non-uniform, but acceptable
● For atmosphere : cannot remove the singulatities



  

x

y

θ

● 1D periodic functions = functions on the unit circle
● Fourier series = polynomials on the circle x2+y2=1

● Sort them according to spatial scale : 
eigenvalues of Laplacian
associated eigenmodes = Fourier modes

● Project, expand and truncate at |n|<N

● Smooth functions on the unit sphere x2+y2+z2=1 
= polynomials in Cartesian coordinates x,y,z

● Sort them according to spatial scale :
eigenvalues of Laplacian
associated eigenmodes = spherical harmonics

Spherical harmonics 
an analogy wih 1D Fourier decomposition



  

l=0

l=1

l=3

l=2

m=-3 m=-2 m=-1 m=3m=2m=1m=0

Although the basis of each eigenspace is anisotropic, each eigenspace is isotropic
=> good basis for uniform-resolution representation of scalar fields using triangular truncation

● Representation of vector fields : vorticity-streamfunction decomposition
● Very accurate if the fields are very smooth : not really relevant for atmosphere/ocean



  

Although the quadrature points form a non-uniform latitude-longitude mesh, 
the resolution is uniform

Harmonic transform in practice

Forward transform
● Integrals are computed as weighted sums of

pointwise values (quadrature formula)
● Zonal : regularly spaced, equal weights => 1D FFT
● Latitudinal : unequally spaced, Gauss-Legendre

weights => L full matrix-vector multiplications lxl

Forward transform
● Integrals are computed as weighted sums of

pointwise values (quadrature formula)
● Zonal : regularly spaced, equal weights => 1D FFT
● Latitudinal : unequally spaced, Gauss-Legendre

weights => L full matrix-vector multiplications lxl

Backward transform
● Latitudinal : L full matrix-vector multiplications
● Zonal : 1D FFT

● One needs usually Nx=3L and Ny=3L/2 points to avoid aliasing of nonlinear terms : about
4 quadrature points for one spectral coefficient

● Cost of FFT reasonable O(Ny.Nx.log(Nx)) but hard to parallelize efficiently 
● Matrix-vector multiplications possible to parallelize but expensive O(L.Ny^2)
● Imminent death of the spectral method predicted regularly in the last 30 years
● Still there after huge efforts for efficiency at ECMWF (Wedi, 2013)



  

Typical sequence of operations in a spectral model

Prognostic fields

Spectral space Physical space

Value and gradient at
quadrature points

Nonlinear terms at
quadrature points

Inverse
harmonic
transform

Forward
harmonic
transform

Explicit
tendencies

S
em

i-i
m

pl
ic

it 
lin

ea
r 

so
lv

er

Prognostic fields ● Solving Poisson/Helmholtz problems essentially
cost-free in spectral space

● Semi-Implicit – Semi-Lagrangian allows large
time steps

● Compensates high cost of harmonics transforms
● Semi-Lagrangian not conservative



  

Spherical harmonics / spectral models : recap

● Spherical harmonics solve the pole problem by providing uniform-resolution
function spaces

● Elliptic problems with horizontally uniform coefficients efficiently solved in
spectral space

● Harmonic transforms expensive and hard to parallelize because spherical
harmonics have global support

● Spectral semi-implicit semi-lagrangian (SISL)  still the « method to beat »
for numerical weather prediction

● Example of  another approach to representing scalar/vector fields :
expand/project on function bases (Galerkin approach)

● Active current research on Galerkin approach with locally supported basis
functions (finite elements)



  

Quasi-uniform meshes
● Already considered in the early days of atmospheric modelling (Sadourny et al., 1968)
● Could not achieve satisfactory stability and conservation properties
● Abandoned in favor of spectral method or zonal filters
● Revived recently in search of more parallelism



  

Stratégies pour l'ordre « élevé »

● Objectif : avant tout réduire l'empreinte
de la grille

● Ordre 2 a priori suffisant, pourquoi pas
ordre 3 ou 4 si efficace

● Plus important pour le transport que
pour la dynamique (opinion des
« experts »)



  

Stratégies pour l'ordre « élevé »

Ullrich, Jablonowski & Van Leer (2010) : 
Volumes finis + reconstructions locales d'ordre 4 + Runge-Kutta semi-implicite

Stabilisation par dissipation implicite
(solveurs de Riemann)



  

Stratégies pour l'ordre « élevé »

Taylor & Fournier (2010) : Éléments finis d'ordre 4 (Q3) + Runge-Kutta, 

Quadrature aux points GLL
 => matrice de masse diagonale

Forme vector-invariant 
+ compatibilité grad/div 
=> conservation de l'énergie

Stabilisation par dissipation explicite
(hyperlaplacien)



  

Préservation discrète de l'équilibre géostrophique

Nickovic (2002)

Équilibres 
géostrophiques violés

Équilibres géostrophiques
préservés

Thuburn (2008)



  

Préservation discrète de l'équilibre géostrophique

Maillages quelconques : 
Thuburn et al. (2009)

Nickovic (2002)

Équilibres 
géostrophiques violés

Équilibres géostrophiques
préservés

Thuburn (2008)



  

Vertical discretization : 
● Vertical coordinates
● Where should we place prognostic/diagnostic variables
● Criteria : mass/transport consistency, numerical dispersion

Spherical meshes
● curvilinear Cartesian meshes
● global curvilinear Cartesian meshes : the pole problem
● a meshless method : spectral method
● quasi-uniform meshes and associated issues

Conservation of non-linear integral invariants
● a few clever solutions
● towards systematic approaches



  



  

Expression for U,V,B to conserve a given energy H(h,u,v) ?

Retro-engineering Sadourny (1975)



  



  

Same program in 3D ?

Eulerian vertical coordinate : Gassmann (2012)
Generalized vertical coordinate : Dubos & Tort (2014), Tort et al. (2014), Dubos at al. (2014)



  

inertia Coriolis gravitypressure

Kinetic energy

Planetary velocity

Internal energy
Potential energy

Lagrangian least action principle for fluid flow
(Eckart, 1960 ; Morrison, 1998)



  

Dynamics in curvilinear coordinates

Phillips,
1970

(Tort & Dubos, 2014)

● covariant : same form in all coordinate
systems

● derives from a variational principle :
Hamilton's principle of least action

● dynamically consistent (White & Bromley, 1995) :
conserves energy, angular momentum,
potential vorticity for any choice of zonally-
symmetric metric, planetary velocity, Jacobian

metric, planetary velocity, Jacobian can be
approximated without jeopardizing
dynamical consistency

 

various geometric approximations, each
characterized by a certain choice of metric,
planetary velocity, Jacobian



  

Kinetic energy

Planetary velocity

Internal energy
Potential energy

Least action principle in curvilinear coordinates



  

Generalized vertical coordinates & prognostic variables

Isentropic / Isopycnal

+ momentum + momentum

Mass-based

Lagrangian

+ momentum
4+1 fields

Redundant flow
description

3+1 fields
Non-redundant
flow description

Hydrostatic
Boussinesq

Anelastic

6 fields
Redundant flow

description

5 fields
Non-redundant
flow description

Euler

Eulerian (z-based)

+ momentum



  

Quasi-hydrostatic Hamiltonian formulation
(Dubos & Tort, 2014)

Lagrangian / Isentropic / Mass-based z-based

4 equations of motion + 1 constraint

instantaneous hydrostatic adjustment + vertical remapping



  

Hamiltonian formulation in generalized vertical coordinates
(Dubos & Tort, 2014)

Isentropic / Isopycnal Mass-based z-based

Diagnosed from
horizontal mass flux

Integration by parts
+ independence to vertical coordinate
=> conservation of energy



  

specific volume
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Hydrostatic balance Top boundary condition



  



  

Thuburn et al., 2009
Ringler et al., 2010

Centered mass flux

Energy and PV-conserving Coriolis force



  



  

Vertical discretization : 
● Vertical coordinates
● Where should we place prognostic/diagnostic variables
● Criteria : mass/transport consistency, numerical dispersion

Spherical meshes
● curvilinear Cartesian meshes
● global curvilinear Cartesian meshes : the pole problem
● a meshless method : spectral method
● quasi-uniform meshes and associated issues

Conservation of non-linear integral invariants
● a few clever solutions
● towards systematic approaches
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